COSINE$500975$ - перевод на немецкий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

COSINE$500975$ - перевод на немецкий

TECHNIQUE REPRESENTING DATA AS SUMS OF COSINE FUNCTIONS
Discrete Cosine Transform; Inverse discrete cosine transform; IDCT; DCT (math); Fast cosine transform; Inverse cosine transform; Fast Cosine Transform; Applications of the discrete cosine transform
  • JPEG DCT]]
  • An example showing eight different filters applied to a test image (top left) by multiplying its DCT spectrum (top right) with each filter.
  • 310x310px
  • 336x336px

COSINE      
Europäisches Programm zur Förderung der offenen Kommunikation mit dem Ziel verschiedene europäische Forschungseinrichtungen zu verbinden
sinusoidal wave         
  • Illustrating the cosine wave's fundamental relationship to the circle.
  • 3D complex plane model to visualize usefulness for translation of domains
  • sawtooth]] waveforms
MATHEMATICAL CURVE THAT DESCRIBES A SMOOTH REPETITIVE OSCILLATION; CONTINUOUS WAVE
Sinusoidal; Sine-wave; Sinewave; Sinusoid; Sine curve; Cosine curve; Sine waves; Cosine wave; Frequency, periodicity, amplitude for sinusoids; Non-sinusoidal; ∿; Sinusoidal wave; Sinusoidal waveform; Sinusoidal function; Non-sinusoidal waveforms; Sine Wave; Sign Wave; Sinusoidally; Non-sinusoidal waveform; Non-sinusoidal Waveforms; Sine tone; Sine tones; Sinusoidal curve
(Mathematik) sinusitische Welle, wellenförmiger den Sinus beschreibender Graph (dessen Amplitude sich nach der Funktion y=sinx nach verändert)
sine curve         
  • Illustrating the cosine wave's fundamental relationship to the circle.
  • 3D complex plane model to visualize usefulness for translation of domains
  • sawtooth]] waveforms
MATHEMATICAL CURVE THAT DESCRIBES A SMOOTH REPETITIVE OSCILLATION; CONTINUOUS WAVE
Sinusoidal; Sine-wave; Sinewave; Sinusoid; Sine curve; Cosine curve; Sine waves; Cosine wave; Frequency, periodicity, amplitude for sinusoids; Non-sinusoidal; ∿; Sinusoidal wave; Sinusoidal waveform; Sinusoidal function; Non-sinusoidal waveforms; Sine Wave; Sign Wave; Sinusoidally; Non-sinusoidal waveform; Non-sinusoidal Waveforms; Sine tone; Sine tones; Sinusoidal curve
Sinuskurve (Graph der Sinusfunktion, symmetrischer sich wiederholender Graph der um die X-Achse auf und ab läuft)

Определение

COSINE
Cooperation for Open Systems Interconnection Networking in Europe. A EUREKA project.

Википедия

Discrete cosine transform

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including digital images (such as JPEG and HEIF), digital video (such as MPEG and H.26x), digital audio (such as Dolby Digital, MP3 and AAC), digital television (such as SDTV, HDTV and VOD), digital radio (such as AAC+ and DAB+), and speech coding (such as AAC-LD, Siren and Opus). DCTs are also important to numerous other applications in science and engineering, such as digital signal processing, telecommunication devices, reducing network bandwidth usage, and spectral methods for the numerical solution of partial differential equations.

The use of cosine rather than sine functions is critical for compression since fewer cosine functions are needed to approximate a typical signal, whereas for differential equations the cosines express a particular choice of boundary conditions. In particular, a DCT is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using only real numbers. The DCTs are generally related to Fourier series coefficients of a periodically and symmetrically extended sequence whereas DFTs are related to Fourier series coefficients of only periodically extended sequences. DCTs are equivalent to DFTs of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), whereas in some variants the input or output data are shifted by half a sample. There are eight standard DCT variants, of which four are common.

The most common variant of discrete cosine transform is the type-II DCT, which is often called simply the DCT. This was the original DCT as first proposed by Ahmed. Its inverse, the type-III DCT, is correspondingly often called simply the inverse DCT or the IDCT. Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs) are developed to extend the concept of DCT to multidimensional signals. A variety of fast algorithms have been developed to reduce the computational complexity of implementing DCT. One of these is the integer DCT (IntDCT), an integer approximation of the standard DCT,: ix, xiii, 1, 141–304  used in several ISO/IEC and ITU-T international standards.

DCT compression, also known as block compression, compresses data in sets of discrete DCT blocks. DCT blocks sizes including 8x8 pixels for the standard DCT, and varied integer DCT sizes between 4x4 and 32x32 pixels. The DCT has a strong energy compaction property, capable of achieving high quality at high data compression ratios. However, blocky compression artifacts can appear when heavy DCT compression is applied.